IMIDAZOLE-CATALYZED ISOMERIZATION OF PENICILLINS INTO PENICILLENIC ACIDS Hans Bundgaard

Pharmacy Laboratories (Galenical Pharm.), Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark.

(Received in UK 7 **October 1971; accepted for publication 27 October 1971)**

The principal antigenic determinant in penicillin allergy is the penicilloyl group bound by amide linkage to amino groups on proteins $^{\mathrm{1}}.$ It has been demonstrated that penicilloyl compounds may be formed by a direct aminolysis of penicillins^{2,3} and/or by aminolysis via the highly reactive degradation product, penicillenic acid⁴. However, as the rates of both the direct aminolysis⁵ and of the isomerization of penicillins to the corresponding penicillenic acids^{6,7} at pH $7.2 - 7.4$ are quite slow, the chemical mechanism of antigenicity of penicillins is not clearly understood. The present paper describes a strong imidazolecatalyzed isomerization of benzylpenicillin I into benzylpenicillenic acid II^8 . This is the first reported catalysis of the reaction $I \rightarrow II$.

The reactions were carried out under conditions in which imidazole was in great excess over penicillin so that pseudo-first-order kinetics would be obtained $(3-4 \times 10^{-5}$ M benzylpenicillin, $0.04 - 0.3$ M imidazole, $\mu = 0.5$ M with KCl, solvent water, pH $6.44 - 8.18$, 37°). HgCl₂ was added to the imidazole buffers in a concentration of 5×10^{-5} M to stabilize the labile II by blocking the

4613

SH-group. It was unambiguously determined that the mercuric chloride which produces a complex with imidazole⁹ has no effect upon the rate or mechanism of degradation of I (cf. Ref.^{7,8}). The rates of formation of II were measured by following the increase in absorbance at 325 nm as a function of time; the rate constants (k_{obs}) were determined by the method of Guggenheim. It was found that the production of II goes through a short lag period and thereafter obeys a pseudofirst-order rate law. In all cases the penicillenate formed corresponded to loo% conversion of I (II, λ_{max} 325 nm, log ϵ 4.42, lit.¹⁰ log ϵ 4.42). After completion of a run, treatment of the reaction solution with an excess of 2 M NaOH yielded a product having λ_{max} 298 nm, log ε 4.24, in agreement with 2-benzyl-4-hydroxymethyleneoxazol-5(4H)-one (λ_{max} 298 nm, log ϵ 4.25)¹⁰. This reaction has been described for benzylpenicillenic acid $^{\rm lo}$ and benzylpenicillenic acid disulphide $^{\rm ll}$.

Plots of k_{obs} at constant pH as a function of imidazole concentration showed a definite upward curvature with increasing imidazole, indicating an order higher than unity in imidazole. As shown in Fig. 1 plots of $k_{\text{obs}}/(Im)$ ys. (Im) are linear and without measurable intercepts. (Im) represents the concentration of imidazole free base ($pK_S = 7.00 \pm 0.02$, $\mu = 0.5$ M, 37°). For several pH values, plots of the slopes of these straight lines $\underline{vs.}$ a_H/K_A^t provide a linear relationship of slope k_1 and intercept k_2 (Fig. 2). Thus, the overall kinetic expression is given by eq. 1 and 2.

$$
- d(I)/dt = d(II)/dt = k_1(Im)(ImH^+)(I) + k_2(Im)^2(I)
$$
 (1)

$$
k_{\text{obs}} = k_1(\text{Im})(\text{Im}H^+) + k_2(\text{Im})^2
$$
 (2)

The values of the third-order rate constants k_1 and k_2 were 0.38 1² mole⁻²min⁻¹ and o.12 1^2 mole $^{-2}$ min $^{-1}$, respectively. At any fixed totale imidazole concentration maximum values of k_{obs} occur at pH 7.4. The rate equation strongly suggests that the imidazole-catalyzed isomerization of I into II proceeds by a general acid-catalyzed and a general base-catalyzed assistance to nucleophilic attack of imidazole on the penicillin, i.e., at the β -lactam carbonyl carbon. The observed initial induction period in the formation of II indicates the existence of an intermediate, in accordance with the proposal of a nucleophilic catalysis. A support for a mechanism implying nucleophilic catalysishasfurther come from similar

Figure 1. $-$ Plot of $\kappa_{\text{obs}}/(\text{Im})$ (1 mole- min-) vs. the concentration of imidazole free base (Im) as a function of pH.

mole $\lceil \mathsf{min} \rceil$), as a function of $\mathsf{a}_{\rm H}/\rm K_{\rm a}^{\rm -}.$

experiments with phenoxymethylpenicillin. The specific H⁺-catalyzed isomerization 8 of this penicillin into the corresponding penicillenic acid was determined to be about 28 times slower than that of I. The imidazole-catalyzed reaction, however, proceeded about 1.5 times faster. A determination of the alkaline hydrolysis rates of the two penicillins as a measure of the susceptibility to nucleophilic attack revealed a similar greater $(x 1.5)$ reactivity of phenoxymethylpenicillin.

Presumably, the isomerization involves an initial formation of N-penicilloylimidazole which could then undergo a rapid intramolecular conversion to II. While further studies are in progress to elucidate the imidazole-catalyzed reactions in more detail, it is interesting to note the extremely rapid formation of penicillenic acids under physiological conditions of pH and temperature. In absence of imidazole, the half-life for formation of II at pH 7.4 and 37° was determined to be 9 x 10^3 hours; imidazole in a concentration of 0.5 M reduces the half-life to 20 min. For phenoxymethylpenicillin the rate enhancement is even greater, $t_{\frac{1}{2}}$ is reduced from 25 x lo⁴ hours to about 13 min.

References

- 1. A.L.De Week and G.Blum, Int.Arch.Allergy Appl.Immunol., 27, 221 (1965).
- 2. F.R.Batchelor, J.M.Dewdney and D.Gazzard, Nature, 206, 362 (1965).
- 3. C.H.Schneider and A.L. De Week, Nature, 208, 57 (1965).
- 4. B.B.Levine, Arch.Biochem.Biophys., 93, 50 (1961).
- 5. C.H.Schneider and A.L. De Week, Biochim.Biophys.Acta, 168, 27 (1968).
- 6. C.H.Schneider and A.L. De Week, Helv.Chim.Acta, 49, 1965 (1966).
- 7. M.A.Schwartz and G.-M.Wu, J.Pharm.Sci., 55, 550 (1966).
- 8. The mechanism of the isomerization in aqueous solution was recently reported: H.Bundgaard, J.Pharm.Sci., 6o, 1273 (1971).
- 9. P.Brooks and N.Davidson, J.Amer.Chem.Soc., 82, 2118 (1960).
- lo. A.H.Livermore, F.H.Carpenter, R.W.Holley and V. du Vigneaud, J.Biol.Chem., 175, 721 (1948).
- 11. J.L.Longridge and D.Timms, J.Chem.Soc.(B), 848 (1971).